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The incidence of occupation-related low back disor-
ders has grown to epidemic proportions in the indus
trialized world in terms of both incidence as well as
cost. 2382027757679 Many have indicated that the
risk of low back disorder is associated with occupa-
tional factors; specifically, manual materials handling
or lifting. The National Institute for Occupational
Safety and Health®® investigated the relationship be-
tween low back disorders and occupational lifting
factors and found 60% of low back disorder claims
were associated with overexertion. Furthermore, an
abundance of research has suggested a link between
risk of injury during heavy work and-the biomechani-
cal stresses placed on the spine.!31425:58

Biomechanical models of the lumbar region have
been developed in an effort to improve our under-
standing of how occupation-related low back disor-
ders occur. Most models assume that external mo-
ments imposed about the spine are countered by the
activity of the trunk musculature. Because of their
mechanical disadvantage relative to external loads,
the muscle forces are many times greater than the ex-
ternal loads and therefore become the primary load-
ers of the spine. The resultant vector created by the
summation of these muscle forces must be resisted by
the spine, resulting in compression, shear, and tor-
sional forces. Hence, it is imperative to the under-
standing of spinal loading (both acute and cumula-
tive) to accurately predict muscle behavior during
the performance of occupational tasks.

During the last 20 years, the development of these
models has gone through a gradual metamorphosis.
Early formulations consisted of single equivalent
muscle models of the trunk. Chaffin et al!3:1* pre-
dicted the muscle forces necessary to counteract a
load held in the hands during a sagittally symmetric
isometric exertion. Their approach was to develop a
simple two-dimensional free body diagram using a
single extensor muscle equivalent supplying the re-
storative moment necessary to counter the external
load. They calculated spinal compression using simple
mechanical principles. Similar approaches have also
been used to predict spinal compression associated
with a task.’® These compression values are then com-
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pared to spinal loading tolerance limits to assess risk
of low back disorder.17:7* However, no validation
studies have shown that these guidelines®® have had a
significant impact on the incidence of low back in-
jury.

More recent research has evidenced that single
equivalent extensor muscle models may be limited in
their ability to assess risk of low back disorder be-
cause they are unable to accurately model shear and
torsional forces that occur in the spine during com-
plex lifting tasks. Epidemiologic evidence has shown
that twisting and asymmetrical trunk motions involv-
ing shear and torsional spinal loading are related to
increased risk of injury.%2%30:50,73 In vitro studies of
spinal specimens have shown that spinal motion seg-
ments have lower capacity to withstand compression
while simultaneously withstanding torsional or
shearing loads.23:¢1 Additionally, the stress—strain re-
lationships of the lumbar tissues are significantly al-
tered when shearing loads are used in combination
with compressive loads?? and when cyclic torsional
loads are applied.!8:38 These findings suggest a need
for multiple muscle system models that can more ac-
curately evaluate more complex spinal loading that
may occur during lifting.

Multiple muscle system models®:26,28,31-33,43,48,52-
54,59,62,64-66 have evolved-in response to this need and
include three-dimensional trunk mechanics employ-
ing multiple agonist and antagonist trunk muscles
used to define three-dimensional spinal reaction
forces. Generally, these models use more accurate
anatomic data regarding the location, cross-sectional
area, and line of action of the individual muscles.
Thus, by increasing the accuracy of the modelled
anatomy, the potential for understanding the more
complex three-dimensional forces exerted on the
spine was recognized.

However, these more complete analyses produce a
situation in which the number of unknown muscle
forces exceed the number of static equilibrium equa-
tions and results in a system of equations that are
statically indeterminate. Several methods to over-
come these problems have been tested. First, one so-
lution was to simply assume some of the muscle
forces were zero, thus making the system determi-
nate.®* The results of this approach did not generally
conform to experimental observations.?6:3%40 Fur-
thermore, these assumptions were found to be even
less realistic when significant forces were introduced
or a dynamic component was added.*3-46,67,81

The second approach was to solve the problem of
static indeterminacy through either linear or non-
linear optimization. Linear programming has been
used most often.1:#:5:15,64,66,69,70 [ inear programming
models minimize a stress in the body subject to the
constraints that static equilibrium conditions must be
maintained. Generally, solutions to linear program-

ming formulations of biomechanical problems tend
to oversimplify the system. That is, there are far
fewer muscles active in the optimal solution that are
active during actual lifting conditions. This points to
a fundamental limitation of such models, which is
that the number of nonzero values at the optimal so-
lution can be at most equal to the number of con-
straint equations (excluding non-negativity con-
straints). Therefore, with only six constraint
equations, the number of active muscles can be, at
most, six.*?

This limitation results in the inability of the linear pro-
gramming models to predict antagonistic and synergistic
muscle activity. During realistic lifting conditions, the
biomechanical system is in a constant state of flux. Mus-
cle groups activate and deactivate constantly to maintain
constant control over the trunk mass throughout the path
of motion. Validation of most optimization studies re-
quired subjects to achieve muscle steady state during an
isometric exertion. During isometric steady state there is
limited coactivation of the trunk muscles; thus, the pre-
dicted optimal solutions may correlate well with EMG
data. However, the literature has shown that forces and
low back disorder risk increase significantly under realis-
tic dynamic motion lifting situations.10,19,21,35,36, 39,41,50-
52 Under these dynamic load conditions there is a large
amount of muscle coactivation and the predicted optimal
solutions do not correlate well with recorded EMG
data 4546

The fundamental problem associated with omit-
ting antagonism and synergism from biomechanical
models of the trunk is that the spinal reaction forces
are misrepresented. “Optimal” linear programming
solutions of spinal reaction forces misrepresent shear
and torsional spinal forces because all muscle forces
in the multiple muscle system are not represented.
Thus, linear optimization is unable to generate accu-
rate predictions of actual spinal loads under typical
complex loading conditions. In addition to these
problems, linear optimization models accommodate
neither the differences between individuals nor the
differences in strategies taken within an individual.
Schmidté® has shown that there is variability in the
performance of the simplest of tasks. It has further
been shown that physical factors such as fatigue may
influence the degree of variability present.® Thus, an-
other limitation of optimization is its inability to pre-
dict variability in the biomechanical system, specifi-
cally, muscle force variability.

The prediction of spinal load variability associated
with work is extremely important in predicting occu-
pation-related low back disorder risk. Both Herrin et
al?S as well as Marras and associates’® have shown
through biomechanical analyses of the workplace
that risk of low back disorders was more a function
of the peak, though often infrequent, loads imposed
on the spine by the work. Thus, it is essential to
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document not only the average spinal loading associ-
ated with a task, but also the extreme spinal loading
associated with the work.

A third means of overcoming the problem of static in-
determinacy as well as a means to overcome the problem
of individual variation has been to employ biologically-
assisted models. These models use bioinstrumentation to
directly estimate muscular force and thereby circumvent
the problems associated with estimating “ideal” muscle
forces. This approach is capable of addressing the vari-
ability issue because the individual’s history of muscle ac-
tivity is used to “drive” the models, thus accounting for
the between-subject and within-subject variability.

The most widely used bioinstrumentation method
for indirectly measuring muscular forces is elec-
tromyography (EMG).>” Some of the more successful
biologically-assisted models have used this EMG-force
relationship in what are often called “EMG-assisted”
biomechanical models. Two of the EMG-assisted mod-
els of the lumbar region include those of the McGill
group®’’~* and those of the Marras group.2248:49,62
These models use EMG inputs from the various muscles
of the trunk in the calculation of the spinal reaction
forces. The fundamental principle of these EMG-as-
sisted biomechanical models is that muscle tissue has a
maximum capacity or “gain” factor that limits its ability
to exert force as a function of its cross-sectional area.
Early models’2-*3 used this gain factor as an error term
that was permitted to change between exertions. Later
models?2#8 have preset this gain value so that the re-
sults were more physiologically correct. The normalized
EMG is then used to mediate the amount of force ex-
erted by the muscle. In addition, these models contain
factors that modify the EMG signal based on the veloc-
ity of contraction and the location along the muscle’s
length~tension curve so that an accurate representation
of the actual muscle force can be calculated. Then, using
basic mechanical principles, estimates of the spinal re-
action forces (compression and shear) can be found.
Marras and Sommerich*® have validated an EMG-as-
sisted model by showing that the model was capable of
accurately predicting the measured external trunk
torque exerted by subjects during both isometric and
isokinetic conditions. More recent studies have also
been able to validate the model under isoinertial (con-
stant acceleration) conditions.22

One of the benefits of using these EMG-assisted
models compared to optimization is that the variability
between subjects and between trials within a subject
can be quantified because the results reflect data actu-
ally collected during an exertion. This permits investi-
gation of the probabilistic (stochastic) behavior of the
biomechanical system and the subsequent variations in
trunk loading. Insights into the variability of the trunk
loading can be gained by collecting EMG data over
many repetitions of a task and using this data to predict
variations in spinal loading via the model.

One of the major limitations of such models is that
the recording of EMG signals under occupational con-
ditions or even laboratory simulations of an occupa-
tional task is extremely time consuming and can be im-
practical for routine use. Thus, the usefulness of such
models is severely limited for application to industry.

Several studies have attempted to predict trunk mus-
cle activity during simulated lifting conditions. Such in-
formation could be used to as input to an EMG-assisted
model. However, these attempts have not been able to
successfully account for variability in muscle activity
over tasks or trials. Marras and Mirka*¢ used multiple
regression techniques to try and predict the activity lev-
els of the ten trunk muscles. These results showed that
prediction of the extensor muscles was relatively good
(0.75 < R? < 0.92) whereas prediction of the antagonist
flexors was less accurate (0.45 < R? < 0.62). Another
approach®® was to develop neural networks that empiri-
cally model the relationship between the external mo-
ments that occur during lifting and the internal muscle
forces required to perform the lift. The author reports
R? values between 0.4 and 1 with majority of the values
being greater than 0.9 but thus far this work has been
limited to isometric exertions. However, using these
methods, the resulting predictions of each model would
be identical given the same input lifting parameters, in-
dicating a deterministic model. Thus, these approaches
are unable to predict the variable nature of the trunk
muscle control system.

Therefore, a significant void exists in our knowledge
of the trunk biomechanical system. There remains a
need to predict continuous trunk muscle activities as
well as the variation in muscle activities expected dur-
ing occupational motions so that variations in spinal
loading can be predicted for specific tasks.

Purpose of the Study

The goals of this research are threefold. First, record
and model the critical features of muscle force variabil-
ity present during trunk bending. Second, use this infor-
mation to create an EMG generator (stochastic model)
that generates EMG values suitable for input into an
EMG-assisted biomechanical model. The output from
this model will be a time history of EMG activity for
each of the trunk muscles given specific trunk bending
specifications (moment load, velocity, range of motion,
etc.). Since the model will be probabilistic it will be ca-
pable of estimating trunk muscle activity variability
with multiple runs of the model. The final objective of
this study is to validate the EMG generator model.

m Experimental Data Collection

To understand trunk muscle activity variability, it was
necessary to collect information about muscle activi-
ties over many repetitions of specific motions. The
subjects in this experiment were asked to perform
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highly controlled bending motions repeatedly. During
the repeated performance of the experimental trunk
bending motions the activities of the trunk muscles
were continuously recorded using EMG.

Five male college students served as subjects in this
portion of the study. None of the subjects had a his-
tory of low back disorder. Basic subject anthropome-
try is listed in Table 1. Each of these subjects had par-
ticipated in similar studies in the past so each was
somewhat familiar with the experimental protocol
and the apparatus, thus limiting the learning artifact.

The bending motions examined in this study in-
cluded isometric, isokinetic and isoinertial (constant
acceleration) exertions. The levels of torque exerted
by the subjects were set at 40 and 80 Nm. Two trunk
positions were used in the isometric trials: 5 and 40°
of forward flexion. In the isokinetic trials, the angu-
lar velocity of the lumbar spine was 20 deg/sec. The
angular acceleration of the trunk during the isoiner-
tial experiments was set at 40 deg/sec2. Each of these
combinations was repeated ten times for each subject,
yielding 100 trials per subject. The order of presenta-
tion of the various combinations of the above inde-
pendent variables was randomized.

The dependent variables were the normalized proc-
essed EMG values of the ten trunk muscles identified
by the transverse cutting plane technique described
by Schultz and Andersson.é* These muscles included
the right and left erector spinae, right and left latis-
simus dorsi, right and left rectus abdominis, right and
left external obliques, and the right and left internal
oblique muscles. Mﬁm}ﬂiﬂﬂg@ﬂ_ns were

as follows: 1) right erector spinae, left erector spi-

nae—location of largest muscle mass (found by pal-
pation, approximately 4 cm from midline of spine) at
the level of L3; 2) right latissimus dorsi, left latis-
simus dor51—most lateral portion of the muscle at the
level of T9; 3) right rectus abdominus, left rectus ab-
dominis—3 c¢m from the midline of the abdomen, 2
cm above the umbilicus; 4) right external obliques, .

chxternal obhques——lO cm frdin the mldllne of the

to the midline of the abdomen; and 5) right internal
oblique, left internal oblique—4 cm above ilium in
the lumbar triangle (dorsal side of trunk) at an angle

Table 1. Basic Anthropometry of Subject Population

Dimension Mean Standard Deviation
Age 22.6 {years) 2.72 {years)
Height 185.7 (cm) 8.91 (cm})
Weight 765 (N) 85.1 (N}
Spine length

{S1-C1) 59.1 (cm) 5.00 (cm)
Max strength {at 5°} 240 (Nm) 42 (Nm)

Figure 1. Experimental apparatus used to control the position,
motion, and torque of each experimental trial.

of 45° to the midline of the spine. The inter-electrode
distance for each pair was 3 cm.

The equipment used for this experiment consisted
of a Kin/Com (Chatanooga Group, Inc., Hixson, TN)
dynamometer, a trunk motion reference frame, an
EMG data processing system and a data collection
system. The dynamometer was connected to the refer-
ence frame to permit precise control of the angular
trunk position, velocity, acceleration, and the exter-
nal torque (about the L5/S1 joint) exerted by the sub-
ject (Figure 1).%6 It was necessary to precisely control
and document trunk motions with this device so that
the trunk muscle EMG activity could be adjusted as a
function of muscle length and trunk motion charac-
teristics in the EMG-assisted model.

The EMG signals collected by the electrodes were
amplified 1000x by miniature preamplifiers located
at the muscle site. The electrode leads to the pream-
plifiers were kept short to reduce the movement noise
and the external electrical noise from the surrounding
environment. The signal was amplified 52,000x and
high and low pass filtered at 80 and 1000 Hz, respec-
tively. This filtered signal was rectified and processed
using a 20 msec moving average window. These proc-
essed EMG data along with torque, angle, and veloc-
ity (measured by the dynamometer) were collected at
100 Hz by the data collection system.

On arrival the subjects had surface electrodes ap-
plied to their skin through standard preparation pro-
cedures.** The subject was then asked to enter the ref-
erence frame so the adjustable base could be set for
the subject’s leg length to ensure that their L5/S1 joint
was aligned with the rotating axis of the Kin/Com dy-
namometer. Once the subject was secured in the refer-
ence frame they performed maximum voluntary con-
tractions at two positions (5° and 40° of sagittal
bend). Both maximum static extensions and flexions
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were collected as well as the resting values in each of
these postures.

After these maximal exertions, the experiment be-
gan with the subject performing completely random-
ized trials. Fach of these trials dictated that the sub-
jects perform a controlled exertion with very specific
parameters (torque, position, or velocity or accelera-
tion). During these trials the angular position, veloc-
ity and acceleration was controlled by the dyna-
mometer. The exerted torque was controlled by the
subject within a tolerance of 3 Nm using a video feed-
back system that displayed their instantaneous torque
output as well as the torque designated for the par-
ticular trial.

The EMG data collected during the experiment
were preprocessed by employing a Hanning smooth-
ing function (band width of 17 and repeated 3 times).
This process served as a low pass filter of 3 Hz for the
integrated signal. This technique has been shown to
minimize noise present in the EMG signal and en-
hances the EMG/muscle force relationship.?? The
EMG values associated with the data were normal-
ized with respect to the maximum and resting EMG
values that occurred at a particular trunk angle. Dy-
namic trials were normalized with respect to the in-
terpolated maximum and resting values. This nor-
malization was performed to eliminate the
length—tension artifacts present in the EMG signal.>¢
The data was further normalized across subjects. This
data set was used to describe the distribution of mus-
cle activities.

m Model Structure

The fundamental concept of the model is that during
a specific lifting motion each trunk muscle behaves
according to a probabilistic process. Furthermore,
this process describes the various states of activation
that can be assumed by a muscle throughout a range
of motion. The data from the experimental portion of
this study provided key information about the basic
nature of trunk muscle activity and variability that
could be expected over repeated trials given a set of
trunk bending specifications. These data became the
foundation on which the stochastic simulation model
was based.

The database development involved two steps.
These steps were intended to put the data into a form
such that it could be accessed by the model. First, the
collected data were used to develop empirical distri-
butions (histograms) for each muscle. These histo-
grams indicated how often a specific range of muscle
activity occurred given specific components of trunk
bending motion. An example of this type of histo-
gram is shown in Figure 2 for the right erector spinae
muscle under one specific exertion condition. How-
ever, these histograms do not capture the inherent
coactivity of the system.

/

In an effort to model the coactive nature of the
trunk’s multiple muscle system, conditional histo-
grams of the various muscle combinations were deter-
mined as a function of the various trunk bending con-
ditions. A conditional histogram describes the
probabilistic activity of one muscle given knowledge
of another’s activation level. This process assumed
that the primary drivers of the trunk’s multiple mus-
cle system were the erector spinae muscles. Knowl-
edge of their collective activities could indicate how
balanced and forceful an exertion might be and
would dictate how much peripheral coactivity would
be likely. This type of control mechanism has been hy-
pothesized previously.6””

The conditional influence of the erector spinae
muscles on the coactivation of the other muscles was
governed in the model through the creation of two
new variables: SES and DES. SES describes the sum of
the erector spinae normalized EMG values (right
erector spinae + left erector spinae) whereas DES de-
scribes the difference between the two erector spinae
values (right erector spinae - left erector spinae). The
mean and standard deviation for SES and DES activi-
ties were calculated for each experimental condition.
These distributions (SES and DES) collectively repre-
sent the muscles’ activation magnitude and asymme-
try and drive the probability of coactivation of the re-
maining muscles in the muscle prediction model.

The mean and standard deviation values of SES
and DES were used to drive this coactivation concept
by partitioning the possible combinations of SES and
DES into the matrix shown in Figure 3. Once this ma-
trix was developed the values of SES and DES explic-
itly defined a position in the matrix (CELL) to which
each experimental value was assigned. Associated
with each of these cells are ten conditional histograms
that represent the activity range (distribution) of each
of the ten trunk muscles.

5 Relative Frequency (%)

0.13
0.11
0.09
0.07
0.06
0.04
0.02
0.00

8 16 24 32
EMG (% of max)

Figure 2. Histogram of right erector spinae muscle activities
resulting from repetitive performance of a specific bending
motion (isemetric, torque = 80 Nm, trunk angle = 40°. This il-
lustrates the spread of the electromyographic data.




Trunk Muscle Coactivation During Bending « Mirka and Marras 1401

SES

Mean -.44 Std Mean + .44 Std

Cell 1" |Cell2 Cell 3

Mean - .44 Std

DES Cell4 |Cell5 Cell 6

Mean + .44 Std

Cell7 Cell8 | Cell9

Figure 3. Scheme used to partition the SES/DES sample
space. Each experimental data point was placed into one of
the nine bins or “CELLs" shown. The resuiting nine histo-
grams of for each muscle described the co-activity of the
muscular system.

The second step in this process was to parameter-
ize each of the resulting conditional histograms using
a software package called FITTR1,78 which fit the
empirical data into a distribution function using
Johnson’s translation system. The Johnson transla-
tion system is a four-parameter model that converts a
standard normal distribution into a wide variety of
distributions. The four parameters are xi (a location
parameter), lambda (a scale parameter), gamma (a
shape parameter), and delta (a shape parameter). The
resulting probability density functions (PDFs) repre-
sent the conditional probabilities of trunk muscle ac-
tivation. An example of the fitted empirical distribu-
tions is shown in Figure 4, where the normalized
EMG is plotted against relative frequency that is indi-
rectly related to probability. A sample of the parame-
ters describing these best-fit distributions are shown
in Tables 2 and 3.

The actual simulation model flow is shown in Fig-
ure 5 that indicates the process followed by the simu-
lation model and the point at which the experimental
databases (developed in the experimental portion of
this research and refined in the database develop-
ment) were accessed. The model process contains sev-

5 Relative Frequency (%)

0.13
0.12
0.10
0.08
0.06
0.04
0.02
0.00

-+ Best Fit
—+Empirical

0 10 20 30 40
EMG (% of max)

Figure 4. Example of the fitted vs empirical distribution: right
erector spinae, torque = 80 Nm, trunk angle = 40°,

eral key components. First, the characteristics of a
specific trunk bending exertion must be precisely
identified in terms of trunk torque, position, velocity,
and acceleration. Second, this information is used to
calculate the four distribution parameters (xi,
lambda, gamma, and delta) for the SES and DES dis-
tributions. These parameters are often interpolated
and/or extrapolated from the experimental values as-
sociated with the experimental database. Third, once
the appropriate SES and DES distributions are de-
fined the model randomly samples values from these
two distributions. Based on this random sampling a
cell in the SES/DES probability matrix (Figure 3) is se-
lected. The cell selection further refines the prob-
ability distribution associated with each muscle of the
trunk thereby identifying feasible activity levels. At
this point the four parameters that describe each indi-
vidual muscle probability distribution are also inter-
polated/extrapolated to meet the specifications of the
individual exertion. Finally, the model randomly se-
lects a point from each of these refined EMG distribu-
tions for each muscle. The model then considers the
next time point and starts the process again using up-
dated information about the characteristics of the ex-
ertion. The differences between subjects were mod-
eled in this process using linear translations of the
distributions based on subject maximum strength
data.*6 The output from the simulation model are
time-dependent traces of possible EMG activity that
could occur during the specified lift. When the simu-
lation model is run multiple times an appreciation for
muscle variability can be gained.

Table 2. Distribution Parameters for the Sum of the Erector Spinae

Torque (Nm} Trunk Angle {deg) Gamma Delta Lambda Chi
40 5 0.0378 2.402 0.0808 -0.0213
40 40 -0.1596 2.224 0.1022 -0.0297
80 5 0.0000 13.960 0.7453 -0.043
80 40 0.0868 3.390 0.2387 -0.0293
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Table 3. Distribution Parameters for the Latissimus Dorsi Muscle

CELL Torque {Nm) Trunk Angle {deg) Gamma Delta Lambda Chi

1 40 5 -5.341 2.849 0.0200 0.0555
2 40 5 -2.849 8.072 0.1189 0.1143
3 40 . 5 -0.1691 3.154 0.0638 0.1892
4 40 5 -5.011 2.507 0.0138 0.0906
5 40 5 0.000 13.600 0.1614 0.1766
6 40 5 0.000 8.772 0.2303 0.2153
7 40 5 -5.775 5.023 0.0831 0.0394
8 40 5 -5.159 2.802 0.0118 0.1506
9 40 5 -4.583 2.001 0.0098 0.1877

To quantify the spinal loading effects of the poten-
tial muscle activity variability multiple runs of the
simulation model were performed. These simulated
EMG values were then used as inputs to an EMG-as-
sisted biomechanical model?%#8 so an understanding
of the cost of this variability at the spinal level could
also be determined.

B Results

The goal of this analysis was to use the simulation
model to generate distributions describing muscle ac-
tivations and determine how these distributions
changed as a function of the trunk bending motion
specifications. The method used to generate the em-
pirical distributions was to input a single value for
each parameter (torque, position, velocity, and accel-
eration) repetitively and then create histograms from
the resulting simulation output. Two examples of

Next Polnt in Tirme
I=i+1

<

Input specific Torque{), Angle(), Velocity() and
Acceleration()) values at tmei

}

Given bending conditions develop
appropriate SES and DES distbibutions
based on experimenta data

Co-Acthvity Driver
sampie from developed
SES and DES distributions

|

Identify appropriate CELL In SES/DES
probabiity matrix

Deflne Distdbutions for alt Muscles

Given bending conditions and CELL, develop
appropriate distrbibutions for all muscles
based on experimental data

|

Find Muscle Activity Levels
Sample for RLAT, LLAT,....RIN AND UN

Bxperimental SES
and DES EMG data

Bperimertal EMG data
for indhvidual muscles (RLAT, LLAT...
RIN and UN)

y

Output
Predicted muscle activity
level at time | for all ten muscies

Figure 5. Flow chart describing the mechanics of the simula-
tion model.

these distributions developed as a function of the ex-
perimental conditions are shown in Figures 6 and 7.
They illustrate how the experimental conditions
tested in the experiment, as well as those developed
by interpolating the values of the four distribution
parameters, influence the SES distributions.

The sampling distributions were used to generate
continuous muscle activities. Time-dependent input
data sets that consisted of 500 discrete values of
torque, position, velocity, and acceleration were used
for this purpose. These values were input into the
simulation model and time-dependent traces for each
of the ten trunk muscles served as thé output. An ex-
ample of these time-dependent results are shown in
Figure 8. This figure illustrate the mean and a + 3
standard deviation range of the simulated muscular
activity as determined by 50 runs of the simulation
model.

The time-dependent muscle activities were used to
predict spinal loading using an EMG-assisted
biomechanical model?2#8 The spinal reaction forces
represent the components of the resultant vector
force derived from the summation of all of the muscle
forces. Figure 9 shows the reaction forces resulting
from the predicted EMG values for one experimental
condition. An average for all of the isometric condi-
tions reveals that there is a range of 220 N of com-

-+-Torque=40 Nm

2 Relative Frequency (%)

—+Torque=53 Nm
010 |-+ o Ao -+ Torque=67 Nm
0.08 | oY aR, , | -=Torque=80 Nm
0.06 [ B TR g R
0.04 ) LA
0.02 oo B R
0.00+

.
100

80
EMG (% of max)

Figure 6. Response of simulated SES to variable levels of
trunk torque (trunk angle = 5°), which illustrates the shift of
the mean as well and the increased variability of the erector
spinae muscles at greater torque fevels.
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2 Relative Frequency (%) ~+-Veloclty=0 deg/sec

—+Velocity=5 deg/sec

—+Velocity=10 deg/sec
______________ -=Veloclty=15 deg/sec
> Velocity=20 deg/sec

010 o (RSTEMERMTIPRENE

0.08 oo

0.06

0.04

0.02

0.00

EMG (% of max)

Figure 7. Response of simulated SES to variable levels of
trunk velocity (trunk torque = 40 Nm). As in Figure 6, this fig-
ure shows that with increased velocity comes increased vari-
ability.

pression across the three standard deviation range of
the data, a range of 53.7 N of anteroposterior shear
and a range of lateral shear of 10.3 N. In relative
terms, this means that when the mean data (that
would have resulted from a deterministic model) is
compared with that at three standard deviations
above the mean, compressive forces can be under-es-
timated by about 6%, anteroposterior shear by about
25%, and lateral shear by about 50%. These values
increased significantly under isokinetic (8%, 30%,
and 95%) and isoinertial (9%, 50%, and 90%) con-
ditions. It should also be emphasized that these re-
sults relate to sagittally symmetric exertions only. The
lateral shear values and variability would be expected
to increase significantly during asymmetric exertions.

W Validation Study

The objectives of the validation study were to see
how well this new simulation model actually predicts
muscle activities under conditions different from

o EMG (% of max)

Time (seconds)

Figure 8. Time-dependent output of the electromyographic
generator for the right erector spinae, trunk torque = 40 Nm,
trunk acceleration = 40°. Note the spreading of the signal to-
ward the end of the trial, indicating greater variability in the
simulated values due to greater velocity at this point.

those used to develop the model. These new condi-
tions included different levels of the bending motion
variables as well as different subjects. For this simu-
lation model to be useful in ergonomic settings, it
must be robust in both the population on which it can
be used as well as the conditions under which it is ap-
plied. Two different male subjects were used in this
study. Their anthropometric characteristics are
shown in Table 4. These subjects were chosen specifi-
cally to see how the model would predict EMG values
from two different sections of the population. Subject
1 was similar in anthropometry and strength to the
five subjects studied in the development phase of the
model. Subject 2 was significantly larger and stronger
than those in the original group. This subject was

Force (N

00 Spine Compr

(a)

0 1 2 3 4 5
Time (seconds)

00 Spine A/P Shear Force (Newtons)

(b)
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5 Lateral Shear Force (Newtons)
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Figure 9. Model predictions of (A) time-dependent spinal com-
pression, (B} time-dependent anteroposterior shear forces,
and (C) time-dependent lateral shear forces. Trunk torque =
40 Nm, trunk velocity = 20 deg/sec.




1404 Spine « Volume 18 « Number 11 « 1993

Table 4. Anthropometry of Subjects in Validation Study

Dimension Subject 1 Subject 2
Age 26 (years) 22 |years)
Height . 181 (cm) 193 {cm)
Weight 734 (N) 1223 {N)
Spine length 53.6 {cm) 66.1 {cm)
Max strength (at 5°) 427 (Nm)

240 (Nm)

chosen to see how the model would perform in ex-
trapolation from the original population.

The experimental variables tested in this validation
study were the same as those used in the previous
studies but the levels were different: torque level 60
and 110 Nm, angular trunk position 20 and 30° of
sagittal bend, angular trunk velocity 10 and 40
deg/sec, and angular trunk acceleration 20 and 60
deg/sec2. These levels were chosen so that an investi-
gation of both the interpolation and extrapolation
potential of the model could be evaluated. The rest of
the parameters such as muscles sampled, equipment
used, data processing techniques used, and protocols
followed were identical to those used in the original
experiment.

The experimental time-dependent values of torque,
trunk angle, trunk velocity, and trunk acceleration
from the validation trials were used as trunk bending
specifications to generate muscle activities using the
stochastic simulation model. The simulation was run
50 times and the simulated muscle activities were
summarized as a time-dependent mean and # 3 stand-
ard deviation range. The actual EMG data recorded
from each subject were then compared to this model
generated range and a percentage of time that the ac-
tual EMG value fell within the bounds of the simula-
tion prediction was calculated for each muscle. Fig-
ures 10 and 11 show these comparisons for two
experimental conditions.

EMG (% of max)
40

30
20

10

0 o i

0 1 2 3 4 5
Time (seconds)

Figure 10. Sample validation result. Simulated range vs actual
right erector spinae electromyographic activity. Isometric,
trunk torque = 80 Nm, trunk angle = 20°, subject 1. Note the
variability between the two experimental electromyographic
data traces.

0 EMG (% of max)
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Figure 11. Sample validation result. Simulated range vs actual
right latissimus dorsi EMG activity. Isokinetic (trunk velocity = 40
deg/sec), trunk torque = 80 Nm, subject 2. Note the variability be-
tween the two experimental electromyographic data traces.

The results of the validation study are summarized
in Table §. The overall predictive ability of the model
was 82.4%. This represents the average percentage of
data points that were within the + 3 standard devia-
tion range across all muscles, subjects, and experi-
mental conditions. Table 5 also partitions the model
performance as a function of isometric, isokinetic and
isoinertial results. This table shows' that, in general,
the best models are isometric, the second best are
isoinertial and isokinetic are the least accurate at pre-
dicting the EMG activity of the trunk muscles.

Model sensitivity analyses that assessed model per-
formance as a function of model interpolation and
extrapolation revealed that when the model was used
to interpolate between original data sets 83.2% of the
experimental validation values fell within the pre-
dicted range of values, whereas, when the model was
used to extrapolate beyond the original data set
79.8% of the experimental data fell within predicted
limits. Finally, a mix of extrapolated and interpolated
conditions yielded experimental recordings that fell
within the model predictions 82.5% of the time. The
measures of model sensitivity used here were very
conservative. Auto-correlation effects of the simula-
tion model would produce a worst-case evaluation of
the model.

It was also interesting to see how the model re-
sponded to a subject who had significantly different
anthropometric and strength characteristics than the
original subject population. These results showed
that the model’s predictive power was not diminished
significantly by the different subject. The success rate
for the subject from the similar population was
83.1% while the success rate for the “extrapolated”
subject was 81.8%.

m Discussion

Biomechanical models of spinal loading are valuable
for two reasons. First, they provide insight into the op-
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Table 5. Proportion of Actual EMG Data Points Within the Range as Predicted by the Simulation Model,

Partitioned by Motion Type

RLAT LLAT RES LES RAB LAB REX LEX RIN LIN
Isometric .995 915 .921 .985 .929 .935 .851 747 .833 .816
Isokinetic .945 * .99 539 910 163 .855 7 728 .581 .644
Isoinertial .901 .994 .851 .942 628 .755 637 134 926 .820

eration and behavior of the trunk muscle control sys-
tem. If the trunk can be successfully modeled then we
can further our understanding of how the trunk oper-
ates and this information could be used to help evalu-
ate the status of the trunk’s musculoskeletal control
system. Second, biomechanical models, when accu-
rate, can be used to assess the loading imposed on the
spine during the performance of various tasks.

It is imperative that such models predict muscu-
loskeletal behavior and spinal loading as accurately as
possible. A key issue associated with model accuracy
is the ability to describe the range of muscle activities
and spinal loadings associated with a particular mo-
tion or activity. Because it has been shown that the ex-
treme, as opposed to average, loadings of the back de-
fine the risk of occupationally-related low back
disorders?%0 it is necessary to predict the extreme
loadings that would be expected during the perform-
ance of a particular task. Unless a model is capable of
predicting such extremes via variability predictions
one could not accurately assess the probability of in-
jury or risk associated with a particular activity.

Few biomechanical models are capable of accu-
rately assessing three-dimensional spinal loading due
to the activity to the trunk muscles during a particular
dynamic exertion. EMG-assisted models appear able
to achieve such a goal. Traditionally, the problem with
EMGe-assisted models is that it was necessary to col-
lect EMG recording for every exertion of interest. This
study has shown that, for the first time, we are capable
of predicting the range of EMG activities that would
be expected during a trunk bending task provided that
we have an adequate knowledge of the trunk motion
and external loading conditions. Thus, we can now
use this information to “drive” EMG-assisted models
so that we could predict the range of spinal loadings
that would be associated with a variety of workers re-
petitively performing a particular task.

The prediction of EMG activities over repeated tri-
als for a variety of workers has been accomplished in
this study through the development of a stochastic
model of trunk muscle EMG activity. Stochastic model-
ing of any system, biomechanical or otherwise, permits
one to consider variability in its input and output of the
system and thereby creates a more realistic repre-
sentation of the system. The benefits of modeling the
system stochastically arise from ability to account for
the varied moment arm, cross-sectional area, and vector

force component data across muscles. Because these
attributes differ from one muscle group to the next, the
spinal reaction forces that result from one combination of
muscle forces will differ from those resulting from an-
other combination. This implies that there are ranges of
compression, anteroposterior shear, and lateral shear that
could occur in the spine during a specified lift. Account-
ing for this variability would provide a means to more ac-
curately assess the range of spinal loadings expected from
a specific task among a population of subjects or work-
ers.

The use of stochastic principles in modeling the
EMG signal is not a new idea. There have been several
studies that have modeled various magnitude and tem-
poral aspects of the signal in an attempt to understand
the basic process of muscle contraction. Some have ana-
lyzed single motor unit firings'®-2* whereas others have
investigated the summation of a number of motor
units.11,16:55,57 Zajac80 states that these motor units re-
cordings could be summed to represent activities of
whole muscle. The novel feature of the current study is
that we have not only applied the stochastic principle to
a summation of EMG recordings but we have treated
the system of muscles as a stochastic process thereby
permitting us to predict coactivations of the trunk mus-
cles accurately for the first time.

The validation study revealed that the simulation
model developed renders predictions that are similar to
the types of EMG levels that are present during actual
lifting activities. Numerically the actual EMG values
were within the *+ 3 standard deviation range 90% of
the time for the trunk extensors. It was also encourag-
ing to see that the model was able to predict EMG val-
ues from trials and subjects significantly different from
those used to develop the original database used in the
EMG generator. These results encourage the further de-
velopment and future usefulness of this technique.

One of the basic goals of this research was to gain an
understanding of the variability that can exist in muscle
forces during a simple lifting motion. Figure 6 illus-
trated this variability at its most basic level and how
it was affected by varying levels of extension torque.
The probability density functions displayed in this
figure were developed for SES and show that not only
does the magnitude of the erector spinae muscle force
increase with greater torque levels but the variability
about the mean increased as well. Further, this in-
crease in variability of the erector spinae will influ-
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ence the other muscles of the trunk that must stabilize
the biomechanical system. The biomechanical signifi-
cance of this result is increased co-contraction of the
peripheral muscles during the exertion thereby in-
creasing the complex, three-dimensional loading of
the spine. .

The effect of trunk position was also obvious from
this study (not shown). There was a shifting of the
distributions downward at greater forward trunk an-
gles. This finding was consistent with previous re-
search*® that illustrated such a shift along the length
tension curve of the erector spinae muscle groups.
However, there was only a small change in the shape
of the distributions at different trunk angles indicat-
ing little if any increases in co-contraction as a func-
tion of isometric trunk angle.

These findings add to the body of knowledge re-
garding co-contraction of a multiple muscle system
during bending motions. Recent research has tried to
document the role of co-contraction through the ex-
perimental findings of EMG studies34*5% or the
theoretical development of switching curves3133 and
co-contraction indices.!> Generally, these studies
have documented the existence of co-contraction of
trunk muscles, whereas the current study further
quantifies the magnitude of co-contraction as well as
offers an explanation as to its origin (erector spinae
variability).

The effects of dynamic trunk motion on expected
muscle activities were also evaluated in this study.
Figure 7 illustrates the dramatic effects of increased
velocity on the SES distribution. The change in distri-
bution shape associated with trunk isoinertial activity
was similar to that of velocity, but did not exhibit the
same amount of translation shift along the horizontal
axis. This result is consistent with previous research
that showed a slight decrease with greater accelera-
tion.*” As with increased torque levels, increased dy-
namic activity during trunk bending tended to in-
crease the amount of co-contraction. This coactivity
occurred as a result of erector spinae group variabil-
ity, thereby requiring the other trunk muscles to in-
crease their activity to maintain three-dimensional
equilibrium.

When the aforementioned distributions were em-
ployed in the simulation model, time-dependent
traces of an individual muscle’s activity were gener-
ated that were suitable for input into an EMG-as-
sisted biomechanical model. The output from the
biomechanical model were estimates of spinal reac-
tion forces. These spinal reaction forces represent a
concise means to evaluate the combined effects of
multiple muscle system variability.

In this evaluation the output from 50 runs of the
EMG generator was input into an EMG-assisted
biomechanical model. The results indicated a signifi-
cant reduction in compressive force variability. This

was surprising given the large variability associated
with the individual simulated EMGs. The reason for
this reduction in compressive force variability relates
to a basic attribute of the model that reflects the basic
operation of the biomechanical system. Recall that
SES was defined as the sum of the right and left erec-
tor spinae activities. Because the erector spinae are
the primary extensor muscles their sum was closely
correlated with the extension torque, especially under
the controlled conditions of this experiment. How-
ever, torque was maintained at a relative constant as
defined by the experiment. Therefore, SES was also
well behaved. However, the individual erector spinae
muscles were not subject to the same set of con-
straints. Combinations of activities between these
two muscles could supply the required torque and the
muscles activities could vary between muscles as long
as their sum produced a relatively constant external
torque. Therefore, the individual erector spinae mus-
cles were much more variable than the sum and,
hence, spinal compression was much more controlled
than the individual erector spinae muscle activities.
This illustration emphasizes the value of considering
the variability associated with trunk muscle activity.

This same reasoning can be used to explain why
anteroposterior and lateral shear did not exhibit the
same type of focusing effect that occurred with com-
pression. Anteroposterior and lateral shear forces ex-
hibited levels of variability consistent with trunk
muscle activity variability. These spinal reaction
forces were related to the muscle forces used to stabi-
lize the spine and were also not required to sum to a
given value as were the erector spinae muscles. An-
teroposterior shear and lateral shear were therefore
much more closely related to the variability of the
trunk muscle forces than was compression.

These results suggest that, biomechanically, com-
pression was not greatly affected by the variability in
muscle forces, whereas variability among shear forces
were significantly affected. The variance in shear
forces may increase further under greater loading
conditions. This is a significant finding since recent
research suggests that shear forces may be indicative
of risk of injury. In a study assessing risk factors asso-
ciated with lifting in industry, Marras et al’? have
shown that components outside the sagittal plane dis-
criminate well between high and low risk jobs. They
found that three of the five most discriminating fac-
tors consisted of trunk motions that increase shear
and torsion loading of the spine. Finite element analy-
ses’? as well as in vitro studies”-63 have shown that
the spine responds in a significantly different manner
when compression and shear were simultaneously in-
duced as opposed to pure compression. In fact, a fi-
nite element model developed by Shirazi-AdI’?
showed that the anulus fibrosis of the intervertebral
disc was capable of resisting very large compressive
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loads, and potential for failure occurred when there
were significant shear and torsional loads applied.
When this information is considered in conjunction
with the effects found in the current study it becomes
apparent that stochastic modeling of the three-dimen-
sional spinal reaction forces holds great promise for un-
derstanding the origin of low back disorders.

The stochastic model presented in this article indi-
cates a promising future for this type of biomechanical
modeling. Several improvements would further enhance
its applicability. First, a wider range of subjects and an
expansion of the conditions under which they are tested
would broaden the models applicability. These condi-
tions would include the introduction of asymmetry as
well as an expansion of the levels of torque, velocity,
and acceleration studied.

Second, the model could be expanded to simulate
other types of motions such as pulling, pushing, or
twisting. This would require that more conditional rela-
tionships between the muscle groups be explored and
would create a more dynamic coactivity structure.

Finally, a stochastic model of muscle activity can be
used to help understand muscle system activities and
spinal loadings associated with those with low back dis-
orders. Such a model could be used to quantify how
muscle usage changes when patients experience specific
low back disorders.
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